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Abstract 

Motivation. For both Solvency II and IFRS 17 the actuary can use unpaid claim variability estimates for 
cash flows and the runoff of unpaid claims in addition to the more widely used accident year view of the 
unpaid claims. Under Solvency II, the concept of the one-year time horizon adds a new dimension to the 
estimates for unpaid claim distributions. While other models are also available, this paper will focus on the 
closed form model developed by Mack, modified by Merz & Wüthrich to address the 1-year time horizon, 
and on its extension for 2-year, 3-year, etc. time windows that can be reconciled back to the original Mack 
formulas. 
 
Method. This paper is based on a review of the foundational Mack and Merz-Wüthrich formulas and their 
decomposition into process variance and parameter uncertainty, per future diagonal. The decompositions 
are then used to show how modifications to the accident year formulas can be used to calculate the standard 
deviations for cash flow and unpaid claim runoff estimates. In addition, an alternative view of the covariance 
adjustment is developed to aide comparisons with other models. 
 
Results. England, Verrall & Wüthrich propose using the N-year extrapolation of the Merz-Wüthrich 
formulas for risk margin estimates using the cost of capital method. In this paper, we will discuss how the 
original formulas can be modified to better fit the Solvency II time horizon concept. 
 
Conclusions. The paper will demonstrate that while the Merz-Wüthrich formulas (and by extension the 
England, Verrall & Wüthrich formulas) are an elegant bridge between the 1-year time horizon and the 
ultimate time horizon used by Mack, there is an alternative formulation for the runoff of the N-year time 
horizon that better fits the Solvency II environment. The paper also includes cash flow and unpaid claim 
runoff formulations for Mack that can be used for IFRS 17. 
 
Availability. In lieu of technical appendices, companion Excel workbooks are included that illustrate the 
calculations described in this paper. The companion materials are summarized in the Supplementary 
Materials section and are available by emailing the author. 
 
Keywords. Reserve variability, chain ladder, prediction error, mean square error of prediction, cost of 
capital, risk margin, risk adjustment, Solvency II, IRFS 17, value at risk, tail value at risk, one-year time 
horizon. 

             

1. INTRODUCTION 

While there is now a large and growing volume of models that can be used for reserve 
variability estimates, one of the foundational models was introduced by Mack [5] in 1993. 
Because it is a closed form solution, which can be easily adapted in an Excel function or 
reserving software, it has gained widespread use.  
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The Solvency II regulatory regime in Europe introduced the concept of the 1-year time 
horizon and Merz & Wüthrich [7] took up the challenge of modifying the Mack formulas to 
directly estimate the reserve variability of the claim development result for a 1-year time 
horizon. Similar to the Mack formulas, the Merz-Wüthrich models have gained widespread use 
for Solvency II. 

For both the Mack and Merz-Wüthrich formulas, the papers only focus on an accident year 
view of the claim development, which is natural as this is the primary configuration for 
reserving data. Fortunately, as all the “parts” are included in the formulas it is a natural 
extension of these models to work out the calendar year formulas for calculating the variance 
of the cash flows and unpaid claim runoff. In addition to typical uses, examining both of these 
in more detail helps to decompose the 1-year time horizon, which includes both parameter and 
process variance for the next calendar year, to estimate possible outcomes, and only parameter 
variance for the remaining future calendar years, to estimate reserves contingent on the possible 
outcomes in the next calendar year (i.e., over a 1-year time horizon). 

1.1 Research Context 
The model developed by Mack is widely used and understood by actuaries around the world 

and the Mack papers are well supported with derivations and proofs. Thus, this paper will focus 
on a high-level discussion of the modeling framework and will not reproduce the derivations 
and proofs as the reader can find these in the original papers. 

The model developed by Merz-Wüthrich is widely used and understood in Europe, but less 
well known outside of Europe. The Merz & Wüthrich [7, 8] papers are similarly well supported 
with derivations and proofs that will not be reproduced in this paper. 

This family of models is a distribution free method for calculating the variance of the chain 
ladder (CL) method by combining the process variance and parameter variance components of 
the mean squared error of prediction (MSEP): 

The use of colors for the process variance and parameter variance components of the 
formulas is useful for clarifying the calculations and tracing the components through the various 
formulas. 

MSEP ≈ ඥ݁ܿ݊ܽ݅ݎܽݒ ݏݏ݁ܿ݋ݎ݌ +  (1.1) ݁ܿ݊ܽ݅ݎܽݒ ݎ݁ݐ݁݉ܽݎܽ݌
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1.2 Objective 
The calendar year view of the standard formulas is an important addition to the actuarial 

literature to support cash flow and unpaid claim runoff calculations for different regulatory and 
financial reporting regimes, such as Solvency II and IRFS 17, in addition to enterprise risk 
management uses. A recent paper by England, Verrall & Wüthrich [3] examines how the 
ultimate and time horizon views of the Mack and Merz-Wüthrich models, respectively, are 
connected. 

In England, Verrall & Wüthrich [3], the authors propose that the runoff of the time horizons 
using the Merz-Wüthrich formulas is ideal for uses such as the runoff of the capital for the cost 
of capital method of calculating a risk margin. We will examine this proposed use of the Merz-
Wüthrich model and propose an alternative approach. 

1.3 Outline 
The remainder of the paper proceeds as follows. Section 2 will provide an overview of the 

notation used in the paper. In Section 3, the Mack model is described and then additional 
formulas for calculating the variance of the cash flows and runoff of the unpaid claims are 
specified. Next, Section 4 will focus on the Merz-Wüthrich models, which include the runoff 
of the time horizon beyond year one. Similar to the Mack model discussion, the cash flow 
formulas will be specified. Then, in Section 5 alternative formulas for the runoff of the time 
horizon beyond year one will be proposed. Finally, Section 6 will discuss conclusions based on 
results applying the formulas to a real dataset.  

2. NOTATION 

The notation in this paper is from the CAS Working Party on Quantifying Variability in 
Reserve Estimates Summary Report [1] since it is intended to serve as a basis for further research. 
Many models visualize loss data as a two-dimensional array, (ݓ, ݀), with accident period or 
policy period ݓ and development age ݀ (think ݓ = “when” and ݀ = “delay”).1

 For this 
discussion, it is assumed that the loss information available is an “upper triangular” subset for 
rows ݓ = 1,2, … , ݊  and for development ages ݀ = 1,2, … , ݊. The “diagonal” for which ݓ + ݀ −

                                                           
1 For a more complete explanation of this two-dimensional view of the loss information, see the Foundations of 

Casualty Actuarial Science [4], Chapter 5, particularly pages 210-226. 
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1 equals the constant, ݇, represents the loss information for each accident period ݓ as of 
accounting period ݇.2 

For purposes of including tail factors, the development beyond the observed data for periods 

݀ = ݊ + 1, ݊ + 2, … ,  is the ultimate time period for which any claim activity occurs ݑ where ,ݑ
– i.e., ݑ is the period in which all claims are final and paid in full – must also be considered. 

The paper uses the following notation for certain important loss statistics: 

,ݓ)ܿ ݀): cumulative loss from accident year ݓ as of age ݀.3 

,ݓ)ݍ ݀): incremental loss for accident year ݓ from ݀ − 1 to ݀. 

,ݓ)ܿ ݊) =  ,݊ when claims are at ultimate values at time ݓ total loss from accident year :(ݓ)ܷ
or with tail factors.4 

,ݓ)ܿ (ݑ =  when claims are at ultimate values at time ݓ total loss from accident year :(ݓ)ܷ

 .ݑ

݊ future development after age :(ݓ)ܴ − ݓ + 1 for accident year ݓ, i.e., = ܷ(ݓ) −

,ݓ)ܿ ݊ − ݓ + 1). 

,ݓ)ܿ factor applied to :(݀)ܨ ݀) to estimate ܿ(ݓ, ݀ + 1). 

,ݓ)݁ ݀): a random fluctuation, or error, which occurs at the ݓ, ݀ cell. 

 .ݔ the expectation of the random variable :(ݔ)ܧ

௫ߪ Or, alternatively .ݔ the variance of the random variable :(ݔ)ݎܸܽ
ଶ. 

 .ݔ ௫: the standard deviation of the random variableߪ

 .ݔ ො: an estimate of the parameterݔ

ܰ: the total number of accident years.5 

                                                           
2 Some authors define ݀ = 0,1, … , ݊ − 1 which intuitively allows ݇ =  along the diagonals, but in this case the ݓ

triangle size is ݊ × ݊ − 1 which is not intuitive. With ݀ = 1,2, … , ݊ as defined in this paper, the triangle size ݊ × ݊ 
is intuitive, while ݇ = ݓ + ݀ − 1 along the diagonals is less intuitive but still works. A way to think about this 
which helps tie everything together is to assume the w  variables are the beginning of the accident periods and the 
݀ variables are at the end of the development periods. Thus, if years are used then cell ܿ(݊, 1) represents accident 
year ݊ evaluated at 12/31/ ݊, or essentially 1/1/ ݊ + 1. 

3 The use of accident year is for ease of discussion. All of the discussion and formulas that follow could also apply 
to underwriting year, policy year, report year, etc. Similarly, year could also be half-year, quarter or month. 

4 This would imply that claims reach their ultimate value without any tail factor. This is generalized by changing ݊ 
to ݑ = ݊ +  .is the number of periods in the tail ݐ where ,ݐ

5 In a typical triangle the number of accident years, ܰ, is the same as the number of development periods, ݊, but the 
number of development periods can be longer and even when they are the same using ܰ vs. ݊ helps visualize the 
calculations in the formulas. 
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The notation does not distinguish paid vs. incurred, but if this is necessary, capitalized 
subscripts ܲ and ܫ could be used. The cumulative known data, ܦ, used in the formulas in this 
paper can be illustrated as follows: 

  d       

  1 2 3 … n-1 n 

w  1 c(1,1) c(1,2) c(1,3) … c(1,n-1) c(1,n) 

 2 c(2,1) c(2,2) c(2,3) … c(2,n-1)  

 3 c(3,1) c(3,2) c(3,3)    

 … … …     

 N-1 c(N-1,1) c(N-1,2)     

 N c(N,1)      

To better illustrate the perspectives related to time between the Mack and Merz-Wüthrich 
models, the following notation and terms are used: 

 .at time” is equivalent to the valuation date used for financial accounting“ :ݐ

ܶ: “time horizon” is the period for which the full distribution, including both 
process and parameter variance, is estimated. 

ܶ′: “time window” is the period between the valuation date and the time when 
only the parameter variance is estimated. 

3. MACK MODEL 

Mack uses the common CL loss development model and demonstrates that, under specific 
assumptions, the best estimate of the age-to-age factors is the all-year volume weighted average: 

Further, given the best estimate of the age-to-age factors, the best estimate of the ultimate 
value, given the known data, is calculated from the product of the age-to-age factors. 

,ݓ)̂ܿ]ܧ [ܦ|(݊ = ,ݓ)ܿ ݀) × (݀)෠ܨ × ݀)෠ܨ + 1) × ⋯ × ݊)෠ܨ − 1) (3.2) 

3.1 Model Assumptions 
For Mack’s distribution free estimates of the variance, the formulas rest on three key 

assumptions. The first assumption is that the expected value of the next future cumulative value 
is the product of the previous cumulative value and the age-to-age factor: 

(݀)෠ܨ =  
∑ ܿ(݆, ݀ + 1)ேିௗ

௝ୀଵ

∑ ܿ(݆, ݀)ேିௗ
௝ୀଵ

 (3.1) 



Cash Flow and Unpaid Claim Runoff Estimates Using Mack and Merz-Wüthrich Models 
 
 

 
6 © Copyright 2019. Milliman, Inc. All Rights Reserved. 

,ݓ)̂ܿ]ܧ ݀ + [ܦ|(1 = ,ݓ)ܿ ݀) ×  ෠(݀) (3.3)ܨ

The second assumption is that the accident years are independent of one another: 

{ܿ(݅, 1), ܿ(݅, 2), … , ܿ(݅, ݊)}  &  {ܿ(݆, 1), ܿ(݆, 2), … , ܿ(݆, ݊)} are independent for all ݅ ≠ ݆ (3.4) 

The third assumption is that the variance of the next cumulative is proportional to the 
cumulative value: 

,ݓ)̂ܿ]ݎܸܽ ݀ + [ܦ|(1 = ,ݓ)ܿ ݀) × ௗߪ
ଶ (3.5) 

Testing of these assumptions has been discussed by Mack and other authors so, similar to the 
proofs, the details of this testing are not included with this paper.6 

3.2 Uncertainty by Accident Year 
Building on these assumptions, the first step in calculating the total variance by accident year 

is to calculate the variance of the development periods, ߪௗ
ଶ. Mack demonstrates that the unbiased 

estimator of the variance of the development periods is calculated using formula (3.6). 

ොௗߪ
ଶ =

1
ܰ − ݀ − 1

× ෍ ܿ(݆, ݀) ×

ேିௗ

௝ୀଵ

൜
ܿ(݆, ݀ + 1)

ܿ(݆, ݀)
− ෠(݀)ൠܨ

ଶ

;   1 ≤ ݀ ≤ ݊ − 2 (3.6) 

The interpretation of formula (3.6) is straightforward as this is the commonly used weighted 
standard deviation of the age-to-age factors, noting that ܰ − ݀ is the number of individual age-
to-age factors for development period ݀. For the last age-to-age factor, if ܨ෠(݊ − 1) = 1 then we 
could assume that the development is finished and set ߪො௡ିଵ

ଶ = 0. However, if ܨ෠(݊ − 1) ≠ 1 then 
Mack suggested that the value for ߪො௡ିଵ

ଶ  could be calculated by extrapolating using a loglinear 
regression of ߪොଵ, ,ොଶߪ … ,  ො௡ିଶ. Mack also suggested a simpler approach using formula (3.7), whichߪ
is used in the examples that follow. 

ො௡ିଵߪ
ଶ = min [

ො௡ିଶߪ
ସ

ො௡ିଷߪ
ଶ , min{ߪො௡ିଷ

ଶ , ො௡ିଶߪ
ଶ }] (3.7) 

Using the estimated variances by development period, Mack then demonstrates that the 
MSEP for the reserves by accident year can be calculated using formula (3.8). 

ൣݎܸܽ ෠ܴ(ݓ)൧ = ,ݓ)̂ܿ ݊)ଶ × ෍
ොௗߪ

ଶ

෠(݀)ଶܨ

௡ିଵ

ௗୀ௡ାଵି௪

× ቊ
1

,ݓ)̂ܿ ݀)
+

1
∑ ܿ(݆, ݀)ேିௗ

௝ୀଵ
ቋ (3.8) 

                                                           
6 For example, see Venter [10]. 
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Reviewing the formula for the variance of the unpaid claims by accident year, (3.8), we can 
distinguish between the process variance component, which is the variance of the column of 
observed development factors, and the parameter variance component, which is the variance of 
the calculated weighted average development factors. 

3.3 Total Uncertainty 
To calculate the total variance for all accident years combined, we can rely on basic principles 

of statistics as the unpaid claim estimates are assumed to be the expected values, so the total 
estimated unpaid claims is the sum of the estimated unpaid claims by accident year, as shown 
in formula (3.9). 

෠ܴ(ݐ݋ݐ) = ෠ܴ(2) + ෠ܴ(3) + ⋯ + ෠ܴ(ܰ) (3.9) 

Similarly, the total variance for all accident years is the sum of the variances plus 2 times the 
covariance, as shown in formula (3.10). 

ൣݎܸܽ ෠ܴ(ݐ݋ݐ)൧ = ൣݎܸܽ ෠ܴ(2)൧ + ൣݎܸܽ ෠ܴ(3)൧ + ⋯ + ൣݎܸܽ ෠ܴ(ܰ)൧ + 2 ×  (3.10) ݁ܿ݊ܽ݅ݎܸܽ݋ܥ

Using these basic principles of statistics, Mack developed the formula for the total variance, 
as shown in formula (3.11), which completes the modeling framework.7 

ൣݎܸܽ ෠ܴ(ݐ݋ݐ)൧ = ෍ ൝ܸܽൣݎ ෠ܴ(ݓ)൧

ே

௪ୀଶ

+ ,ݓ)2ܿ̂ ݊) ൭ ෍ ܿ(݅, ݊)

ே

௜ୀ௪ାଵ

൱ ෍ ቆ
ොௗߪ

ଶ

෠(݀)ଶܨ
×

1
∑ ܿ(݆, ݀)ேିௗ

௝ୀଵ
ቇ

௡ିଵ

ௗୀ௡ାଵି௪

ൡ 

(3.11) 

It is convenient to segregate the “bottom” or covariance portion of (3.11) when showing the 
results of the Mack calculations as this makes it easier for the user to quickly calculate the total 
uncertainty with and without the covariance adjustment (CVA) – i.e., assuming no correlation 
in the accident years. To illustrate the calculations in all formulas in this paper, we will use the 
Taylor & Ashe [9] data as our sample data, shown in Table 3.1, since it is used in many other 
papers. 

  

                                                           
7 In some sense this modeling framework is not yet complete, as it does not include the tail variability. For ease of 

exposition, the tail variability is ignored in the paper but for completeness the companion Excel files include tail 
variability. The companion Excel files also allow the user to include exposure adjustments and exclude outliers. 
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Table 3.1 – Sample Data Triangle 

 

 

 

 

 

 

 

Using formulas (3.8) and (3.11), the results for the sample data triangle are shown in Table 
3.2. While formula (3.11) can be used to directly calculate the total variance of 2,447,095, 
segregating the covariance adjustment allows us to also directly calculate the total variance 
assuming zero correlation of 2,038,397. The coefficient of variation (CoV) column is the 
standard deviation divided by the mean. 

Table 3.2 – Mack Estimated Unpaid Claims and Standard Deviations 

 

 

 

 

 

 

 

 

 

 

In addition to the commonly used display of the Mack estimates in the first three columns 
of Table 3.2, an interesting alternative is to include the covariance adjustment with the accident 
years. Since the covariance adjustment in formula (3.11) includes portions related to each 
accident year, we can include the portion related to each accident year in an expansion of 

d
1 2 3 4 5 6 7 8 9 10

w 1 357,848       1,124,788       1,735,330       2,218,270       2,745,596       3,319,994       3,466,336       3,606,286       3,833,515       3,901,463       
2 352,118       1,236,139       2,170,033       3,353,322       3,799,067       4,120,063       4,647,867       4,914,039       5,339,085       
3 290,507       1,292,306       2,218,525       3,235,179       3,985,995       4,132,918       4,628,910       4,909,315       
4 310,608       1,418,858       2,195,047       3,757,447       4,029,929       4,381,982       4,588,268       
5 443,160       1,136,350       2,128,333       2,897,821       3,402,672       3,873,311       
6 396,132       1,333,217       2,180,715       2,985,752       3,691,712       
7 440,832       1,288,463       2,419,861       3,483,130       
8 359,480       1,421,128       2,864,498       
9 376,686       1,363,294       
10 344,014       

3.4906 1.7473 1.4574 1.1739 1.1038 1.0863 1.0539 1.0766 1.0177

400.35 194.26 204.85 123.22 117.18 90.48 21.13 33.87 21.13

(݀)෠ܨ
ොௗߪ

w 1 -                   -                   0.0% -                  -                   0.0%
2 94,634            75,535            79.8% -                  75,535            79.8%
3 469,511          121,699          25.9% 81,086            146,238          31.1%
4 709,638          133,549          18.8% 139,674         193,246          27.2%
5 984,889          261,406          26.5% 176,876         315,624          32.0%
6 1,419,459       411,010          29.0% 259,674         486,168          34.3%
7 2,177,641       558,317          25.6% 388,850         680,384          31.2%
8 3,920,301       875,328          22.3% 573,313         1,046,368       26.7%
9 4,278,972       971,258          22.7% 721,693         1,210,034       28.3%
10 4,625,811       1,363,155       29.5% 841,236         1,601,833       34.6%

CVA 1,353,961      1,353,961      
Total 18,680,856    2,447,095      13.1% 2,447,095      13.1%

Ex CVA 2,038,397      10.9%

෠ܴ(ݓ) ]ݎܸܽ ෠ܴ ݓ ]
  CoV CVA ]ݎܸܽ ෠ܴ ݓ ′]

 
CoV
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formula (3.8). 

ൣݎܸܽ ෠ܴ(ݓ)′൧ = ,ݓ)̂ܿ ݊)ଶ × ෍
ොௗߪ

ଶ

෠(݀)ଶܨ

௡ିଵ

ௗୀ௡ାଵି௪

× ቊ
1

,ݓ)̂ܿ ݀)
+

1
∑ ܿ(݆, ݀)ேିௗ

௝ୀଵ
ቋ

+ ,ݓ)2ܿ̂ ݊) ൭ ෍ ܿ(݅, ݊)

ே

௜ୀ௪ାଵ

൱ ෍ ቆ
ොௗߪ

ଶ

෠(݀)ଶܨ
×

1
∑ ܿ(݆, ݀)ேିௗ

௝ୀଵ
ቇ

௡ିଵ

ௗୀ௡ାଵି௪

 

(3.12) 

When using formula (3.12) to include a portion of the covariance adjustment, the formula 
for the total variance shown in (3.10) is revised as shown in formula (3.13). 

ൣݎܸܽ ෠ܴ(ݐ݋ݐ)൧ = ൣݎܸܽ ෠ܴ(2)′൧ + ൣݎܸܽ ෠ܴ(3)′൧ + ⋯ + ൣݎܸܽ ෠ܴ(ܰ)′൧ (3.13) 

This alternative view of the Mack estimates is also included in Table 3.2, starting with the 
column that shows the portion of the covariance adjustment “allocated” to each accident year.8 
Note that for the alternative view the CoVs exhibit a smoother transition from the oldest year 
to the most current year, which may make comparisons to other models more consistent.  

3.4 Unpaid Claim Runoff Uncertainty 
Before looking at the formulas for the time horizon calculations introduced by Merz-

Wüthrich, it is useful to start with the runoff of the unpaid claims. 9 The Mack runoff formulas 
can be used to calculate the risk margin using the cost of capital method and it will be a useful 
comparison to the runoff using the Merz-Wüthrich formulas. 

In order to extend the Mack formulas for the runoff of the unpaid claims, we must first 
review the notation related to time. For this purpose we will designate the “at time” using a 
subscript ݐ = 0,1, … ,  and we will designate the “time-horizon” within the formulas using a ݑ
superscript ܶ = 1,2, … , ܷ. Including this new notation, we could restate the results from 
formulas (3.8) and (3.11) as ܸܽݎ[ ෠ܴ଴

௎(ݓ)] and ܸܽݎ[ ෠ܴ଴
௎(ݐ݋ݐ)], respectively.10 In this case, since we 

are starting from the end of the known data, ܦ, the subscript is zero and because both the 
process and parameter variances are being calculated over the entire time horizon this is 

                                                           
8 Technically, the CVA column is only the covariance portion of formula (3.12) and the alternative standard deviation 

column can be calculated from the square root of the sum of the squares of the original standard deviation column 
and the CVA column. 

9 As noted in Section 1.1, proofs for the original Mack formulas are not included with this paper and as the extensions 
in Sections 3.4 and 3.5 follow the same assumptions and formulations, although reorganized for the cash flows, they 
are included without proofs. 

10 Both the subscripts and superscripts are shown here as a bridge to the time horizon discussion that starts in section 
4, but for any formula where the subscript is absent it can be assumed to be zero and when the superscript is absent 
it can be assumed to be ܷ. 
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commonly referred to as the “ultimate” time horizon, which is designated with the superscript 
ܷ. 

If we start by running off the estimated unpaid claims, the notation in section 2 can be 
restated for ݐ = 1 as shown in formula (3.14) for ݓ = 3,4, … , ܰ. 

෠ܴଵ(ݓ) = ෡ܷ(ݓ) − ,ݓ)̂ܿ ܰ − ݓ + 2) (3.14) 

We can generalize this further for any ݐ as shown in formula (3.15) for ݓ = ݐ + 2, ݐ +

3, … , ܰ. 

෠ܴ௧(ݓ) = ෡ܷ(ݓ) − ,ݓ)̂ܿ ܰ − ݓ + ݐ + 1) (3.15) 

Applying formulas (3.14) and (3.15) to the sample data we can show the runoff of the 
estimated unpaid claims in Table 3.3. 

Table 3.3 – Runoff of Estimated Unpaid Claims 

 

 

 

 

 

 

 

Running off the variance of the unpaid claims by accident year for ݐ = 1, formula (3.8) can 
be restated as formula (3.16) for ݓ = 3,4, … , ܰ. 

ൣݎܸܽ ෠ܴଵ(ݓ)൧ = ,ݓ)̂ܿ ݊)ଶ × ෍
ොௗߪ

ଶ

෠(݀)ଶܨ

௡ିଵ

ௗୀ௡ାଶି௪

× ቊ
1

,ݓ)̂ܿ ݀)
+

1
∑ ܿ(݆, ݀)ேିௗ

௝ୀଵ
ቋ (3.16) 

Generalizing this further for any ݐ is shown in formula (3.17) for ݓ = ݐ + 2, ݐ + 3, … , ܰ. 

ൣݎܸܽ ෠ܴ௧(ݓ)൧ = ,ݓ)̂ܿ ݊)ଶ × ෍
ොௗߪ

ଶ

෠(݀)ଶܨ

௡ିଵ

ௗୀ௡ା௧ାଵି௪

× ቊ
1

,ݓ)̂ܿ ݀)
+

1
∑ ܿ(݆, ݀)ேିௗ

௝ୀଵ
ቋ (3.17) 

Similarly, running off the total variance of the unpaid claims for all accident years for ݐ = 1, 
formula (3.11) can be restated as formula (3.18) for ݓ = 3,4, … , ܰ. 

t = 0 1 2 3 4 5 6 7 8
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 94,634            -                   -                   -                   -                   -                   -                   -                   -                   
3 469,511          93,678            -                   -                   -                   -                   -                   -                   -                   
4 709,638          462,448          92,268            -                   -                   -                   -                   -                   -                   
5 984,889          650,741          424,066          84,611            -                   -                   -                   -                   -                   
6 1,419,459       1,036,173       684,625          446,148          89,016            -                   -                   -                   -                   
7 2,177,641       1,572,093       1,147,592       758,242          494,122          98,588            -                   -                   -                   
8 3,920,301       2,610,043       1,884,254       1,375,463       908,802          592,237          118,164          -                   -                   
9 4,278,972       3,260,138       2,170,522       1,566,954       1,143,840       755,764          492,507          98,266            -                   
10 4,625,811       3,769,007       2,871,597       1,911,841       1,380,205       1,007,518       665,692          433,810          86,555            

Total 18,680,856    13,454,320    9,274,925      6,143,258      4,015,986      2,454,107      1,276,363      532,076         86,555            

෠ܴ௧(ݓ)
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ൣݎܸܽ ෠ܴଵ(ݐ݋ݐ)൧ = ෍ ൝ܸܽൣݎ ෠ܴଵ(ݓ)൧ + ,ݓ)2ܿ̂ ݊)

ே

௪ୀଷ

× ൭ ෍ ܿ(݅, ݊)

ே

௜ୀ௪ାଵ

൱ ෍ ቆ
ොௗߪ

ଶ

෠(݀)ଶܨ
×

1
∑ ܿ(݆, ݀)ேିௗ

௝ୀଵ
ቇ

௡ିଵ

ௗୀ௡ାଵି௪

ൡ 

(3.18) 

Generalizing this further for any ݐ is shown in formula (3.19) for ݓ = ݐ + 2, ݐ + 3, … , ܰ. 

ൣݎܸܽ ෠ܴ௧(ݐ݋ݐ)൧ = ෍ ൝ܸܽൣݎ ෠ܴ௧(ݓ)൧ + ,ݓ)2ܿ̂ ݊)

ே

௪ୀ௧ାଶ

× ൭ ෍ ܿ(݅, ݊)

ே

௜ୀ௪ାଵ

൱ ෍ ቆ
ොௗߪ

ଶ

෠(݀)ଶܨ
×

1
∑ ܿ(݆, ݀)ேିௗ

௝ୀଵ
ቇ

௡ିଵ

ௗୀ௡ାଵି௪

ൡ 

(3.19) 

Applying formulas (3.16) to (3.19) to the sample data, we can show the runoff of the 
estimated standard deviations of the unpaid claims in Table 3.4. 

Table 3.4 – Runoff of Estimated Standard Deviations of the Unpaid Claims 

 

 

 

 

 

 

 

 

As expected, the standard deviations decrease in a similar fashion to the estimated unpaid 
claims and when ݐ = 8 there is no longer a covariance adjustment term since there is only one 
“cell” remaining. As another test of the entire runoff process, we can look at the coefficients of 
variation shown in Table 3.5.  

  

t = 0 1 2 3 4 5 6 7 8
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 75,535            -                   -                   -                   -                   -                   -                   -                   -                   
3 121,699          74,931            -                   -                   -                   -                   -                   -                   -                   
4 133,549          120,373          74,041            -                   -                   -                   -                   -                   -                   
5 261,406          125,695          113,131          69,186            -                   -                   -                   -                   -                   
6 411,010          269,797          130,224          117,306          71,982            -                   -                   -                   -                   
7 558,317          437,273          287,714          139,969          126,301          78,029            -                   -                   -                   
8 875,328          623,100          489,142          323,291          159,581          144,441          90,307            -                   -                   
9 971,258          785,070          557,224          436,400          287,117          139,643          125,999          77,826            -                   
10 1,363,155       903,373          729,436          516,796          404,139          265,121          127,697          114,976          70,421            

CVA 1,353,961      1,039,055      773,477         556,945         384,712         263,965         170,358         79,424            -                  
Total 2,447,095      1,788,912      1,340,940      954,131         663,602         431,762         263,362         159,952         70,421            

]ݎܸܽ ෠ܴ௧(ݓ)]
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Table 3.5 – Runoff of Coefficients of Variation of the Unpaid Claims 

 

 

 

 

 

 

 

From Table 3.5 we can see that the total coefficient of variation increases as we progress from 
ݐ = 0,1, … ,8. This makes sense statistically as estimates further in the future should be relatively 
more uncertain. 

Adjusting the generalized formula (3.17) to include the covariance adjustment related to each 
accident year, we can use formula (3.20). 

ൣݎܸܽ ෠ܴ௧(ݓ)′൧ = ,ݓ)̂ܿ ݊)ଶ × ෍
ොௗߪ

ଶ

෠(݀)ଶܨ

௡ିଵ

ௗୀ௡ା௧ାଵି௪

× ቊ
1

,ݓ)̂ܿ ݀)
+

1
∑ ܿ(݆, ݀)ேିௗ

௝ୀଵ
ቋ + ,ݓ)2ܿ̂ ݊)

× ൭ ෍ ܿ(݅, ݊)

ே

௜ୀ௪ାଵ

൱ ෍ ቆ
ොௗߪ

ଶ

෠(݀)ଶܨ
×

1
∑ ܿ(݆, ݀)ேିௗ

௝ୀଵ
ቇ

௡ିଵ

ௗୀ௡ାଵି௪

 

(3.20) 

Using formula (3.20), the runoff of the standard deviations in Table 3.4 can be restated as 
shown in Table 3.6. 

Table 3.6 – Runoff of Estimated Standard Deviations of the Unpaid Claims 

 

 

 

 

 

 

 

t = 0 1 2 3 4 5 6 7 8
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 79.8% -                   -                   -                   -                   -                   -                   -                   -                   
3 25.9% 80.0% -                   -                   -                   -                   -                   -                   -                   
4 18.8% 26.0% 80.2% -                   -                   -                   -                   -                   -                   
5 26.5% 19.3% 26.7% 81.8% -                   -                   -                   -                   -                   
6 29.0% 26.0% 19.0% 26.3% 80.9% -                   -                   -                   -                   
7 25.6% 27.8% 25.1% 18.5% 25.6% 79.1% -                   -                   -                   
8 22.3% 23.9% 26.0% 23.5% 17.6% 24.4% 76.4% -                   -                   
9 22.7% 24.1% 25.7% 27.9% 25.1% 18.5% 25.6% 79.2% -                   
10 29.5% 24.0% 25.4% 27.0% 29.3% 26.3% 19.2% 26.5% 81.4%

Total 13.1% 13.3% 14.5% 15.5% 16.5% 17.6% 20.6% 30.1% 81.4%

ܸ݋ܥ

t = 0 1 2 3 4 5 6 7 8
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 75,535            -                   -                   -                   -                   -                   -                   -                   -                   
3 146,238          74,931            -                   -                   -                   -                   -                   -                   -                   
4 193,246          144,569          74,041            -                   -                   -                   -                   -                   -                   
5 315,624          182,890          136,340          69,186            -                   -                   -                   -                   -                   
6 486,168          322,928          185,489          139,093          71,982            -                   -                   -                   -                   
7 680,384          516,048          342,289          197,511          149,869          78,029            -                   -                   -                   
8 1,046,368       761,474          577,804          384,423          225,461          171,765          90,307            -                   -                   
9 1,210,034       960,541          700,295          528,807          351,362          210,222          156,485          77,826            -                   

10 1,601,833       1,125,689       893,426          647,922          488,300          326,547          191,615          139,742          70,421            
Total 2,447,095      1,788,912      1,340,940      954,131         663,602         431,762         263,362         159,952         70,421            

]ݎܸܽ ෠ܴ௧(ݓ)′]
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The coefficients of variation comparing the standard deviations in Table 3.6 to the expected 
values in Table 3.3 are shown in Table 3.7. As noted above for Table 3.2, there is a smoother 
transition of all CoVs from the oldest year to the most current year. 

Table 3.7 – Runoff of Coefficients of Variation of the Unpaid Claims 

 

 

 

 

 

 

3.5 Cash Flow Uncertainty 
In order to extend the Mack formulas for the uncertainty of the cash flows we need to focus 

on the calendar year diagonals where ݇ = ݓ − ݀ + 1. Starting with the calendar year estimated 
unpaid claims, we can introduce new notation for cash flow, ܨܥ(݇), and use the formula shown 
in formula (3.21) for ݇ = ܰ + 1, ܰ + 2, … , ܰ + ݊. 

෢ܨܥ (݇) = ෍ ൜
ܿ̂(݆, ܰ − ݆ + 2) − ܿ(݆, ܰ − ݆ + 1); ݇ = ܰ + 1
ܿ̂(݆, ܰ − ݆ + 2) − ܿ̂(݆, ܰ − ݆ + 1); ݇ > ܰ + 1

ൠ

ே

௝ୀ௞ିே

 (3.21) 

Of course, summing the estimated unpaid for all calendar years as shown in formula (3.22) 
should result in the same total estimated unpaid as in formula (3.9). 

෢ܨܥ (ݐ݋ݐ) = ෢ܨܥ (ܰ + 1) + ෢ܨܥ (ܰ + 2) + ⋯ + ෢ܨܥ (ܰ + ݊) (3.22) 

Reorganizing Mack’s formula (3.8) for the variance of each accident year into a diagonal sum 
results in formula (3.23). Note, however, that while the variance for an accident year is based 
on the ultimate estimated amount for that accident year, for the calendar year each of the 
accident year component variances are based on the estimated cumulative amount for next year 
end, i.e., formula (3.23) uses ܿ̂(݆,N-j+2)ଶ instead of ܿ̂(݆,n)ଶ. 

෢ܨܥൣݎܸܽ (݇)൧ = ෍ ܿ̂(݆,N-j+2)ଶ ×
ොேି௝ାଵߪ

ଶ

෠(N-j+1)ଶܨ

ே

௝ୀ௞ିே

× ൝
1

ܿ̂(݆,N-j+1)
+

1

∑ ܿ(݅,N-j+1)ேି௝ିଵ
௜ୀଵ

ൡ (3.23) 

Similar to formula (3.10), the total variance for all calendar years is the sum of the variances 

t = 0 1 2 3 4 5 6 7 8
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 79.8% -                   -                   -                   -                   -                   -                   -                   -                   
3 31.1% 80.0% -                   -                   -                   -                   -                   -                   -                   
4 27.2% 31.3% 80.2% -                   -                   -                   -                   -                   -                   
5 32.0% 28.1% 32.2% 81.8% -                   -                   -                   -                   -                   
6 34.3% 31.2% 27.1% 31.2% 80.9% -                   -                   -                   -                   
7 31.2% 32.8% 29.8% 26.0% 30.3% 79.1% -                   -                   -                   
8 26.7% 29.2% 30.7% 27.9% 24.8% 29.0% 76.4% -                   -                   
9 28.3% 29.5% 32.3% 33.7% 30.7% 27.8% 31.8% 79.2% -                   

10 34.6% 29.9% 31.1% 33.9% 35.4% 32.4% 28.8% 32.2% 81.4%
Total 13.1% 13.3% 14.5% 15.5% 16.5% 17.6% 20.6% 30.1% 81.4%

ܸ݋ܥ
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plus 2 times the covariance, as shown in formula (3.24). 

෢ܨܥൣݎܸܽ ൧(ݐ݋ݐ) = ෢ܨܥൣݎܸܽ (ܰ + 1)൧ + ෢ܨܥൣݎܸܽ (ܰ + 2)൧ + ⋯ + ෢ܨܥൣݎܸܽ (ܰ + ݊)൧ 
+2 ×  ݁ܿ݊ܽ݅ݎܸܽ݋ܥ

(3.24) 

Similarly, formula (3.11) for the variance of the total of all accident years can be reorganized 
as the sum of the calendar years, plus the differences between the accident year variances from 
formula (3.8) and calendar year variances from formula (3.23), as shown in formula (3.25). 

෢ܨܥൣݎܸܽ ൧(ݐ݋ݐ) = ෍ ൝ܸܽܨܥൣݎ෢ (݇)൧ + 2ܿ̂(݇ − ܰ + 1, ݊)

ேା௡

௞ୀேାଵ

× ൭ ෍ ܿ(݅, ݊)

ே

௜ୀ௞ିேାଶ

൱ ෍ ቆ
ොௗߪ

ଶ

෠(݀)ଶܨ
×

1

∑ ܿ(݆, ݀)ேିௗ
௝ୀଵ

ቇ

௡ିଵ

ௗୀேା௡ି௞

ൡ

+ ෍ [ܿ̂(݆,n)ଶ − ܿ̂(݆,N-j+2)ଶ] ×
ොேି௝ାଵߪ

ଶ

෠(N-j+1)ଶܨ

ே

௝ୀ௞ିே

× ൝
1

ܿ̂(݆,N-j+1)
+

1

∑ ܿ(݅,N-j+1)ேି௝ିଵ
௜ୀଵ

ൡ 

(3.25) 

Table 3.8 – Mack Estimated Cash Flows and Standard Deviations 

  

 

 

 

 

 

 

 

 

As with other modeling frameworks, the sums of the means and variances by diagonal should 
be consistent with the sums by row, as seen in Table 3.8. In other words, the totals in the first 
three columns of Table 3.8 are the same as the totals in the first three columns of Table 3.2. 
Ideally, the CoVs should increase steadily as the future diagonals should represent more 
uncertainty, i.e., as ݇ increases from 11 to 19, but for the data in the example the CoVs are 
relatively consistent from ݇ = 11, … ,18 and then jump significantly for ݇ = 19. 

k 11 5,226,536       665,562          12.7% 1,531,370      1,669,750       31.9%
12 4,179,394       609,716          14.6% 1,015,053      1,184,097       28.3%
13 3,131,668       558,467          17.8% 758,861         942,208          30.1%
14 2,127,272       445,167          20.9% 521,368         685,565          32.2%
15 1,561,879       353,389          22.6% 359,256         503,933          32.3%
16 1,177,744       248,729          21.1% 234,931         342,139          29.1%
17 744,287          142,151          19.1% 153,519         209,224          28.1%
18 445,521          118,457          26.6% 81,200            143,616          32.2%
19 86,555            70,421            81.4% -                  70,421            81.4%

CVA 2,106,547      2,106,547      
Total 18,680,856    2,447,095      13.1% 2,447,095      13.1%

෢ܨܥ (݇) ෢ܨܥ]ݎܸܽ ݇ ]
  CoV CVA CoVܸܽܨܥ]ݎ෢ ݇ ′]
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Similar to the adjustment of the accident year variance in formula (3.12), the expansion to 
formula (3.23) to include a portion of the covariance adjustment by calendar year is shown as 
formula (3.26). The alternative view the CoVs in Table 3.8 exhibit a similar consistency from 
݇ = 11, … ,18 and then jump significantly for ݇ = 19. Note that the covariance adjustment 
excludes the last diagonal, i.e., ݅ = ݓ + ܰ − 1 in formula (3.11), so none of the CVA is allocated 
to ݇ = 19 in Table 3.8. 

෢ܨܥൣݎܸܽ (݇)′൧ = ෍ ܿ̂(݆,N-j+2)ଶ ×
ොேି௝ାଵߪ

ଶ

෠(N-j+1)ଶܨ

ே

௝ୀ௞ିே

× ൝
1

ܿ̂(݆,N-j+1)
+

1

∑ ܿ(݅,N-j+1)ேି௝ିଵ
௜ୀଵ

ൡ 

+2ܿ̂(݇ − ܰ + 1, ݊) × ൭ ෍ ܿ(݅, ݊)
ே

௜ୀ௞ିேାଶ

൱ ෍ ቆ
ොௗߪ

ଶ

෠(݀)ଶܨ
×

1

∑ ܿ(݆, ݀)ேିௗ
௝ୀଵ

ቇ

௡ିଵ

ௗୀேା௡ି௞

 

+[ܿ̂(݆,n)ଶ − ܿ̂(݆,N-j+2)ଶ] ×
ොேି௝ାଵߪ

ଶ

෠(N-j+1)ଶܨ
× ൝

1
ܿ̂(݆,N-j+1)

+
1

∑ ܿ(݅,N-j+1)ேି௝ିଵ
௜ୀଵ

ൡ 

(3.26) 

After revising formula (3.23) to include a portion of the covariance adjustment, formula 
(3.24) for the total variance is revised as shown in formula (3.27). 

෢ܨܥൣݎܸܽ ൧(ݐ݋ݐ) = ෢ܨܥൣݎܸܽ (ܰ + 1)′൧ + ෢ܨܥൣݎܸܽ (ܰ + 2)′൧ + ⋯ + ෢ܨܥൣݎܸܽ (ܰ + ݊)′൧ (3.27) 

4. MERZ & WÜTHRICH MODEL 

The premise of the 1-year time horizon is that if claims develop unfavorably over the 
subsequent 12 months and capital becomes impaired then management could intervene. Based 
on this premise as implemented for the Solvency II regime, the Merz & Wüthrich model 
calculates the uncertainty in the reserves after one year given the total uncertainty (i.e., the 
possible outcomes) during the first year. In other words, over a 1-year time horizon (i.e., the 
first diagonal), all possible outcomes should be considered and then the new reserves, 
conditional on each possible outcome, are calculated. 

4.1 Uncertainty by Accident Year: One-Year Time Horizon 
The formulas developed by Merz & Wüthrich [7] to calculate the unpaid claim uncertainty 

over a 1-year time horizon build on Mack’s formulas and assumptions shown in (3.1) to (3.7). 
Starting with Mack’s accident year uncertainty from (3.8), Merz-Wüthrich split the formula 
into components based on the first diagonal and the remaining diagonals as shown in (4.1). 
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ൣݎܸܽ ෠ܴଵ(ݓ)൧ = ,ݓ)̂ܿ ݊)ଶ ×
ොேାଵି௪ߪ

ଶ

෠(N+1-w)ଶܨ
× ቊ

1
(N+1-w,ݓ)̂ܿ

+
1

∑ ܿ(݆,N+1-w)௪ିଵ
௝ୀଵ

ቋ 

,ݓ)̂ܿ+ ݊)ଶ × ෍
ොௗߪ

ଶ

෠(݀)ଶܨ

௡ିଵ

ௗୀ௡ାଶି௪

× ቊߙௗ
ଵ ×

1
∑ ܿ(݆, ݀)ேିௗ

௝ୀଵ
ቋ 

(4.1) 

For the first diagonal, both the process and parameter uncertainty are included such that the 
results will exactly match the Mack results for the first diagonal as in formula (3.23). For the 
remaining diagonals, only the parameter uncertainty is included and it is also reduced a bit using 
a weight function, ߙௗ

ଵ , which is calculated using formula (4.2). 

ௗߙ
ଵ =

ܿ(ܰ + 1 − ݀, ݀)
∑ ܿ(݆, ݀)ேାଵିௗ

௝ୀଵ
; ݀ ݎ݋݂ = 1,2, … , ܰ (4.2) 

The use of color for the weight components of the formulas is useful for clarifying the 
calculations and tracing the components through the various formulas.11 The weight function 
can be thought of as an adjustment to the development factor, ܨ(݀), and the parameter 
uncertainty for the years after the time horizon. 

4.2 Total Uncertainty: One-Year Time Horizon 
Adjusting the Mack formula (3.11) for the total uncertainty for the 1-year time horizon, 

Merz-Wüthrich developed formula (4.3), which also separates the covariance into the first 
diagonal and remaining diagonal components. 

ൣݎܸܽ ෠ܴଵ(ݐ݋ݐ)൧ = ෍ ൝ܸܽൣݎ ෠ܴଵ(ݓ)൧ + ,ݓ)2ܿ̂ ݊) × ൭ ෍ ܿ(݅, ݊)

ே

௜ୀ௪ାଵ

൱

ே

௪ୀଶ

× ൥
ොேାଵି௪ߪ

ଶ

ܰ)෠ܨ + 1 − ଶ(ݓ
×

1
∑ ܿ(݆, ܰ + 1 − ௪ିଵ(ݓ

௝ୀଵ

+ ෍ ቆ
ොௗߪ

ଶ

෠(݀)ଶܨ
× ௗߙ

ଵ ×
1

∑ ܿ(݆, ݀)ேିௗ
௝ୀଵ

ቇ

௡ିଵ

ௗୀ௡ାଶି௪

൩ൡ 

(4.3) 

Using formulas (4.1) and (4.3), the results for the sample data triangle are shown in Table 4.1. 
Comparing the results in the first three columns of Table 4.1 with the same columns in Table 
3.2, note that for ݓ = 2 the uncertainty is entirely for the first diagonal and, as such, the 

                                                           
11 Alternatively, the weight functions could be colored as part of the parameter uncertainty, but using a different color 

will help in later parts of the paper. 
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standard deviations are exactly the same.12 For ݓ > 2 the uncertainties in Table 4.1 are a 
combination of the first diagonal and the remaining diagonals and, as such, the standard 
deviations are less than those in Table 3.2. Finally, the covariance adjustment for the total 
uncertainty in Table 4.1 is also less than in Table 3.2, resulting in a total standard deviation of 
1,778,968 compared to 2,447,095. 

Table 4.1 – Merz-Wüthrich Estimated Unpaid Claims and Standard Deviations 

  

 

 

 

 

 

 

 

 

 

Similar to the alternative view of the covariance adjustment by accident year for the Mack 
model, a portion of the covariance adjustment in formula (4.3) can be included with formula 
(4.1) as shown in formula (4.4). 

                                                           
12 As the Merz-Wüthrich formulas only address changes to the Mack standard deviations, the expected values are the 

same – i.e., ෠ܴ(ݓ) = ෠ܴଵ(ݓ). The identical standard deviations for both Mack and Merz-Wüthrich for ݓ = 2 is 
expected since the first diagonal includes both process and parameter variance for both formulas. 

w 1 -                   -                   0.0% -                  -                   0.0%
2 94,634            75,535            79.8% -                  75,535            79.8%
3 469,511          105,309          22.4% 81,086            132,910          28.3%
4 709,638          79,846            11.3% 129,729         152,332          21.5%
5 984,889          235,115          23.9% 150,379         279,093          28.3%
6 1,419,459       318,427          22.4% 226,186         390,584          27.5%
7 2,177,641       361,089          16.6% 323,435         484,763          22.3%
8 3,920,301       629,681          16.1% 441,515         769,047          19.6%
9 4,278,972       588,662          13.8% 541,749         800,010          18.7%
10 4,625,811       1,029,925       22.3% 600,426         1,192,165       25.8%

CVA 1,025,050      1,025,050      
Total 18,680,856    1,778,968      9.5% 1,778,968      9.5%

Ex CVA 1,453,959      7.8%

෠ܴଵ(ݓ) ]ݎܸܽ ෠ܴଵ ݓ ]
  CoV ]ݎܸܽ ෠ܴଵ ݓ ′]

  CoVCVA
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ଵ ×
1

∑ ܿ(݆, ݀)ேିௗ
௝ୀଵ

ቇ

௡ିଵ

ௗୀ௡ାଶି௪

൩ 

(4.4) 

This alternative view of the Merz-Wüthrich estimates is also included in Table 4.1, starting 
with the column that shows the portion of the covariance adjustment “allocated” to each 
accident year. Note that for the alternative view the CoVs exhibit a smoother transition from 
the oldest year to the most current year similar to the Mack alternative view. 

4.3 Uncertainty by Accident Year: T-Year Time Horizon 
The formulas developed by Merz & Wüthrich [7] above were subsequently extended in Merz 

& Wüthrich [8] to runoff the unpaid claim estimates for later time windows. Starting with ܶ′ =

2, formula (4.1) is extended as shown in formula (4.5). In the Merz & Wüthrich [8] paper, the 
authors describe extensions of the “time horizon” for ܶ > 1, but since the first diagonal in 
formula (4.5) does not include all of the process and parameter variances, in this paper we will 
refer to the extensions as “time windows” (and use the ܶ′ notation) to improve clarity between 
models.13 

ൣݎܸܽ ෠ܴଶ(ݓ)൧ = 

,ݓ)̂ܿ ݊)ଶ ×
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ଶ
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1
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1
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௝ୀଵ
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,ݓ)̂ܿ+ ݊)ଶ × ෍
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ଶ

෠(݀)ଶܨ

௡ିଵ

ௗୀ௡ାଷି௪

× ቊߙௗ
ଶ × (1 − ௗߙ

ଵ) ×
1

∑ ܿ(݆, ݀)ேିௗ
௝ୀଵ

ቋ 

(4.5) 

Note that in the extension for ܶ′ = 2, one minus the weights for ܶ = 1 are used and the 
formula for the weights for ܶ′ = 2 are as in formula (4.6). Note also that the calculation of the 

                                                           
13 In some of the Tables that follow, the headers only refer to ܶ′ for simplicity but for ܶ = 1 the conversion to ܶ is 

implied. 
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weights includes estimated cumulative values when ܶ > 1. 

ௗߙ
ଶ =

ܿ̂(ܰ + 2 − ݀, ݀)
∑ ܿ(݆, ݀)ேାଶିௗ

௝ୀଵ
; ݀ ݎ݋݂ = 2,3, … , ܰ − 1 (4.6) 

A further extension and generalization for ܶ′ > 2 is shown in formula (4.7). 
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(4.7) 

And the extension for the weight function is shown in formula (4.8). 

ௗߙ
் =

ܿ̂(ܰ + ܶ − ݀, ݀)
∑ ܿ(݆, ݀)ேା்ିௗ

௝ୀଵ
; ݀ ݎ݋݂ = ܶ, ܶ + 1, … , ܰ − ܶ + 1 (4.8) 

4.4 Total Uncertainty: T-Year Time Horizon 
In Merz & Wüthrich [8] the extension of the total uncertainty for ܶ′ = 2 is shown in formula 

(4.9). 
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(4.9) 

The further extension and generalization for ܶ′ > 2 is shown in formula (4.10). 



Cash Flow and Unpaid Claim Runoff Estimates Using Mack and Merz-Wüthrich Models 
 
 

 
20 © Copyright 2019. Milliman, Inc. All Rights Reserved. 
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(4.10) 

Applying formulas (4.1) to (4.10) to the sample data results in the standard deviations by year 
as shown in Table 4.2, with the results from Table 4.1 repeated in the first column of Table 4.2. 

Table 4.2 – Runoff of Merz-Wüthrich Estimated Standard Deviations of the Unpaid Claims 

  

 

 

 

 

 

 

As expected, the standard deviations decrease in a similar fashion to the estimated unpaid 
claims and when ܶ′ = 9 there is no covariance adjustment term since there is only one “cell” 
remaining. An additional part of the results in Table 4.2 is the Total column, which is the square 
root of the sum of the squares of the other columns. The Total column is an important result 
as the complete runoff from Merz-Wüthrich are intended to reconcile with the results from 
Mack. Comparing the Total column in Table 4.2 with the results in Table 3.2 we see that the 
estimates are identical. 

The expected runoff of the unpaid claims for Merz-Wüthrich is identical to the runoff for 
Mack, as previously shown in Table 3.3. Dividing the standard deviations in Table 4.2 by the 
means in Table 3.3 results in the runoff of the coefficients of variation shown in Table 4.3. 

T' = 1 2 3 4 5 6 7 8 9 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 75,535            -                   -                   -                   -                   -                   -                   -                   -                   75,535            
3 105,309          60,996            -                   -                   -                   -                   -                   -                   -                   121,699          
4 79,846            91,093            56,232            -                   -                   -                   -                   -                   -                   133,549          
5 235,115          60,577            82,068            51,474            -                   -                   -                   -                   -                   261,406          
6 318,427          233,859          57,825            82,433            51,999            -                   -                   -                   -                   411,010          
7 361,089          328,989          243,412          59,162            85,998            54,343            -                   -                   -                   558,317          
8 629,681          391,249          359,352          266,320          64,443            94,166            59,533            -                   -                   875,328          
9 588,662          554,574          344,763          318,493          236,576          56,543            83,645            52,965            -                   971,258          
10 1,029,925       538,726          511,118          317,142          293,978          218,914          51,661            77,317            49,055            1,363,155       

CVA 1,025,050      676,444         449,236         288,887         164,691         92,828            57,595            24,085            -                  1,353,961      
Total 1,778,968      1,177,727      885,178         607,736         428,681         267,503         128,557         96,764            49,055            2,447,095      

]ݎܸܽ ෠்ܴᇱ(ݓ)]
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Table 4.3 – Runoff of Merz-Wüthrich Coefficients of Variation of the Unpaid Claims 

  

 

 

 

 

 

Adjusting formulas (4.5) and (4.7) to include the covariance adjustment related to each 
accident year are left to the reader. Applying formula (4.4), and the extensions for formulas (4.5) 
and (4.7), the runoff of the standard deviations in Table 4.2 are restated in Table 4.4. The first 
column in Table 4.4 is from Table 4.1 but, more importantly, the Total column in Table 4.4 
reconciles with the alternative view for Mack in Table 3.2. 

Table 4.4 – Runoff of Merz-Wüthrich Estimated Standard Deviations of the Unpaid Claims 

 

 

 

 

 

 

Table 4.5 – Runoff of Merz-Wüthrich Coefficients of Variation of the Unpaid Claims 

 

 

 

 

 

 

The coefficients of variation comparing the standard deviations in Table 4.4 to the expected 

T' = 1 2 3 4 5 6 7 8 9 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 79.8% -                   -                   -                   -                   -                   -                   -                   -                   79.8%
3 22.4% 65.1% -                   -                   -                   -                   -                   -                   -                   25.9%
4 11.3% 19.7% 60.9% -                   -                   -                   -                   -                   -                   18.8%
5 23.9% 9.3% 19.4% 60.8% -                   -                   -                   -                   -                   26.5%
6 22.4% 22.6% 8.4% 18.5% 58.4% -                   -                   -                   -                   29.0%
7 16.6% 20.9% 21.2% 7.8% 17.4% 55.1% -                   -                   -                   25.6%
8 16.1% 15.0% 19.1% 19.4% 7.1% 15.9% 50.4% -                   -                   22.3%
9 13.8% 17.0% 15.9% 20.3% 20.7% 7.5% 17.0% 53.9% -                   22.7%
10 22.3% 14.3% 17.8% 16.6% 21.3% 21.7% 7.8% 17.8% 56.7% 29.5%

Total 9.5% 8.8% 9.5% 9.9% 10.7% 10.9% 10.1% 18.2% 56.7% 13.1%

ܸ݋ܥ

T' = 1 2 3 4 5 6 7 8 9 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 75,535            -                   -                   -                   -                   -                   -                   -                   -                   75,535            
3 132,910          60,996            -                   -                   -                   -                   -                   -                   -                   146,238          
4 152,332          104,771          56,232            -                   -                   -                   -                   -                   -                   193,246          
5 279,093          103,950          90,942            51,474            -                   -                   -                   -                   -                   315,624          
6 390,584          255,290          89,682            88,793            51,999            -                   -                   -                   -                   486,168          
7 484,763          377,458          258,077          86,475            91,743            54,343            -                   -                   -                   680,384          
8 769,047          491,773          402,375          278,897          91,580            99,957            59,533            -                   -                   1,046,368       
9 800,010          658,702          429,906          356,254          247,299          81,487            89,102            52,965            -                   1,210,034       

10 1,192,165       691,492          592,230          382,924          321,096          227,976          71,017            80,981            49,055            1,601,833       
Total 1,778,968      1,177,727      885,178         607,736         428,681         267,503         128,557         96,764            49,055            2,447,095      

]ݎܸܽ ෠்ܴᇱ(ݓ)′]
 

T' = 1 2 3 4 5 6 7 8 9 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 79.8% -                   -                   -                   -                   -                   -                   -                   -                   79.8%
3 28.3% 65.1% -                   -                   -                   -                   -                   -                   -                   31.1%
4 21.5% 22.7% 60.9% -                   -                   -                   -                   -                   -                   27.2%
5 28.3% 16.0% 21.4% 60.8% -                   -                   -                   -                   -                   32.0%
6 27.5% 24.6% 13.1% 19.9% 58.4% -                   -                   -                   -                   34.3%
7 22.3% 24.0% 22.5% 11.4% 18.6% 55.1% -                   -                   -                   31.2%
8 19.6% 18.8% 21.4% 20.3% 10.1% 16.9% 50.4% -                   -                   26.7%
9 18.7% 20.2% 19.8% 22.7% 21.6% 10.8% 18.1% 53.9% -                   28.3%

10 25.8% 18.3% 20.6% 20.0% 23.3% 22.6% 10.7% 18.7% 56.7% 34.6%
Total 9.5% 8.8% 9.5% 9.9% 10.7% 10.9% 10.1% 18.2% 56.7% 13.1%

ܸ݋ܥ
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values in Table 3.3 are shown in Table 4.5. As noted above for Table 4.1, there is a smoother 
transition of all CoVs from the oldest year to the most current year. 

4.5 Cash Flow Uncertainty 
The calculation of the cash flow uncertainty under the time horizon view is more 

complicated than for the ultimate view using Mack. The extension of the Mack formulas to 
calculate the cash flow uncertainty only requires one set of formulas as shown in (3.23) and 
(3.25). The extension of the Merz-Wüthrich formulas to calculate the cash flow uncertainty 
depends on the length of the time window, resulting in a different set of formulas for each of 
ܶ = 1,2, … , ܰ − 1. 14 

Starting with the formulas for ܶ = 1, it is more convenient to separate formula (3.23) into 
separate formulas for the first diagonal and remaining diagonals as shown in formula (4.11). 

෢ܨܥൣݎܸܽ ଵ(݇)൧ = ෍
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 (4.11) 

For the total uncertainty, it is also more convenient to separate formula (3.26) into separate 
formulas for the first diagonal and remaining diagonals as shown in formula (4.12). 
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 (4.12) 

Using formulas (4.11) and (4.12), the results for the sample data triangle are shown in Table 
4.6. 

  

                                                           
14 Similar to the Mack extensions, the extensions for Merz-Wüthrich follow the assumptions and formulations of the 

original papers so they are included without proofs. 
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Table 4.6 – Estimated Merz-Wüthrich Cash Flow and Standard Deviations for T=1 

 

 

 

 

 

 

 

 

 

Comparing the first three columns in Table 4.6 with Table 3.8, it makes sense that for ݇ =

11, i.e., the first diagonal, the results are identical and, comparing Table 4.6 with Table 4.1, the 
total results are also identical as expected.  

Similar to the alternative view of the covariance adjustment by calendar year for the Mack 
model, a portion of the covariance adjustment in formula (4.12) can be included with formula 
(4.11) as shown in formula (4.13). 
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݇)෠ܨ − ܰ + 1)ଶ
×

1
∑ ܿ(݆, ݇ − ܰ + 1)௪ିଵ

௝ୀଵ
቉

+[ܿ̂(݆,n)ଶ − ܿ̂(݆,N-j+2)ଶ] ×
ොேି௝ାଵߪ

ଶ

෠(N-j+1)ଶܨ
× ൝

1
ܿ̂(݆,N-j+1)

+
1

∑ ܿ(݅,N-j+1)ேି௝ିଵ
௜ୀଵ

ൡ

; ݇ = ܰ + 1

ܿ̂(݆,N-j+2)ଶ ×
ොேି௝ାଵߪ

ଶ

෠(N-j+1)ଶܨ
× ൝ߙேି௝ାଵ

ଵ ×
1

∑ ܿ(݅,N-j+1)ேି௝ିଵ
௜ୀଵ

ൡ

+2ܿ̂(݇ − ܰ + 1, ݊) × ൭ ෍ ܿ(݅, ݊)

ே

௜ୀ௞ିேାଶ

൱ ൥+ ෍ ቆ
ොௗߪ

ଶ

෠(݀)ଶܨ
× ௗߙ

ଵ ×
1

∑ ܿ(݆, ݀)ேିௗ
௝ୀଵ

ቇ

௡ିଵ

ௗୀ௞ିேାଶ

൩

+[ܿ̂(݆,n)ଶ − ܿ̂(݆,N-j+2)ଶ] ×
ොேି௝ାଵߪ

ଶ

෠(N-j+1)ଶܨ
× ൝ߙேି௝ାଵ

ଵ +
1

∑ ܿ(݅,N-j+1)ேି௝ିଵ
௜ୀଵ

ൡ

; ݇ > ܰ + 1
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ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۗ

ே

௝ୀ௞ିே

 (4.13) 

This alternative view of the Merz-Wüthrich cash flow estimates is also included in Table 4.6, 
starting with the column that shows the portion of the covariance adjustment “allocated” to 
each calendar year. Note that for the alternative view the CoVs exhibit a smoother transition 

k 11 5,226,536       665,562          12.7% 1,531,370      1,669,750       31.9%
12 4,179,394       111,733          2.7% 348,793         366,252          8.8%
13 3,131,668       108,154          3.5% 284,901         304,739          9.7%
14 2,127,272       95,702            4.5% 226,334         245,735          11.6%
15 1,561,879       83,976            5.4% 177,520         196,381          12.6%
16 1,177,744       76,031            6.5% 141,832         160,926          13.7%
17 744,287          67,017            9.0% 109,047         127,994          17.2%
18 445,521          55,652            12.5% 60,893            82,493            18.5%
19 86,555            40,213            46.5% -                  40,213            46.5%

CVA 1,632,904      1,632,904      
Total 18,680,856    1,778,968      9.5% 1,778,968      9.5%

CoVܨܥ෢ ଵ(݇) ෢ܨܥ]ݎܸܽ ଵ(݇)]
 

CVA CoVܸܽܨܥ]ݎ෢ ଵ ݇ ′]
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from the first diagonal to the last diagonal similar to the Mack alternative view. 

Continuing with the formulas for ܶ′ = 2, the formulas for the first diagonal and remaining 
diagonals are shown in formula (4.14). 

෢ܨܥൣݎܸܽ ଶ(݇)൧

= ෍

ە
ۖ
۔

ۖ
ଶ(N-j+2,݆)̂ܿۓ ×

ොேି௝ାଵߪ
ଶ

෠(N-j+1)ଶܨ
× ൝

1
ܿ̂(݆,N-j+1)

+ (1 − ேି௝ାଵߙ
ଵ ) ×

1

∑ ܿ(݅,N-j+1)ேି௝ିଵ
௜ୀଵ

ൡ ; ݇ = ܰ + 2

ܿ̂(݆,N-j+2)ଶ ×
ොேି௝ାଵߪ

ଶ

෠(N-j+1)ଶܨ
× ൝ߙேି௝ାଵ

ଶ × (1 − ேି௝ାଵߙ
ଵ ) ×

1

∑ ܿ(݅,N-j+1)ேି௝ିଵ
௜ୀଵ

ൡ ; ݇ > ܰ + 2
ۙ
ۖ
ۘ

ۖ
ۗ

ே

௝ୀ௞ିே

 (4.14) 

For the total uncertainty, the formulas for the first diagonal and remaining diagonals are 
shown in formula (4.15). 

෢ܨܥൣݎܸܽ ଶ(ݐ݋ݐ)൧

= ෍

ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۓ ෢ܨܥൣݎܸܽ ଶ(݇)൧ + 2ܿ̂(݇ − ܰ + 1, ݊) × ൭ ෍ ܿ(݅, ݊)

ே

௜ୀ௞ିேାଶ

൱

× ቈ
ො௞ିேାଵߪ

ଶ

݇)෠ܨ − ܰ + 1)ଶ
× (1 − ௞ିேାଵߙ

ଵ ) ×
1

∑ ܿ(݆, ݇ − ܰ + 1)௪ିଵ
௝ୀଵ

቉

+[ܿ̂(݆,n)ଶ − ܿ̂(݆,N-j+2)ଶ] ×
ොேି௝ାଵߪ

ଶ

෠(N-j+1)ଶܨ
× ൝

1
ܿ̂(݆,N-j+1)

+ (1 − ேି௝ାଵߙ
ଵ ) ×

1

∑ ܿ(݅,N-j+1)ேି௝ିଵ
௜ୀଵ

ൡ

; ݇ = ܰ + 2

෢ܨܥൣݎܸܽ ଶ(݇)൧ + 2ܿ̂(݇ − ܰ + 1, ݊) × ൭ ෍ ܿ(݅, ݊)
ே

௜ୀ௞ିேାଶ

൱

× ൥ ෍ ቆ
ොௗߪ

ଶ

෠(݀)ଶܨ
× ௗߙ

ଶ × (1 − ௗߙ
ଵ) ×

1
∑ ܿ(݆, ݀)ேିௗ

௝ୀଵ
ቇ

௡ିଵ

ௗୀ௞ିேାଶ

൩

+[ܿ̂(݆,n)ଶ − ܿ̂(݆,N-j+2)ଶ] ×
ොேି௝ାଵߪ

ଶ

෠(N-j+1)ଶܨ
× ൝ߙேି௝ାଵ

ଶ × (1 − ேି௝ାଵߙ
ଵ ) ×

1

∑ ܿ(݅,N-j+1)ேି௝ିଵ
௜ୀଵ

ൡ

; ݇ > ܰ + 2

ۙ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۗ

ேା௡

௞

 (4.15) 

Using formulas (4.14) and (4.15), the results for the sample data triangle are shown in Table 
4.7.  

Table 4.7 – Estimated Merz-Wüthrich Cash Flow and Standard Deviations for T’=2 

  

 

 

 

 

 

 

 

k 11
12 4,179,394       599,391          14.3% 953,245         1,126,031       26.9%
13 3,131,668       86,156            2.8% 213,751         230,461          7.4%
14 2,127,272       76,066            3.6% 161,420         178,445          8.4%
15 1,561,879       62,836            4.0% 114,746         130,825          8.4%
16 1,177,744       51,412            4.4% 82,900            97,548            8.3%
17 744,287          38,525            5.2% 60,077            71,368            9.6%
18 445,521          31,819            7.1% 31,311            44,641            10.0%
19 86,555            20,602            23.8% -                  20,602            23.8%

CVA 1,002,522      1,002,522      
Total 13,454,320    1,177,727      8.8% 1,177,727      8.8%

CoVܨܥ෢ ଶ(݇) ෢ܨܥ]ݎܸܽ ଶ(݇)]
 

CVA CoVܸܽܨܥ]ݎ෢ ଶ(݇)′]
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Comparing Table 4.7 with Table 3.8, note that the standard deviation for ݇ = 12, i.e., the 
first diagonal at time ݐ = 1, in Table 4.7 is less than in Table 3.8, which makes sense since 
formula (4.17) for the first diagonal only includes a portion of the parameter uncertainty. 
Comparing Table 4.7 with the columns for ܶ′ = 2 in Tables 4.2 and 4.3, the totals are identical 
as expected. Table 4.7 also includes the alternative view of the covariance adjustment, but the 
derivation of the formula is left to the reader. 

Continuing with the formulas for ܶ′ > 2, the formulas for the first diagonal and remaining 
diagonals are shown in formula (4.16). 

෢ܨܥൣݎܸܽ ்(݇)൧

= ෍

ە
ۖ
۔

ۖ
ଶ(N-j+2,݆)̂ܿۓ ×

ොேି௝ାଵߪ
ଶ

෠(N-j+1)ଶܨ
× ൝

1
ܿ̂(݆,N-j+1)

+ ෑ(1 − ேି௝ାଵߙ
௠ )

்ିଵ

௠ୀଵ

×
1

∑ ܿ(݅,N-j+1)ேି௝ିଵ
௜ୀଵ

ൡ ; ݇ = ܰ + ܶ

ܿ̂(݆,N-j+2)ଶ ×
ොேି௝ାଵߪ

ଶ

෠(N-j+1)ଶܨ
× ൝ߙேି௝ାଵ

் × ෑ(1 − ேି௝ାଵߙ
௠ )

்ିଵ

௠ୀଵ

×
1

∑ ܿ(݅,N-j+1)ேି௝ିଵ
௜ୀଵ

ൡ ; ݇ > ܰ + ܶ
ۙ
ۖ
ۘ

ۖ
ۗ

ே

௝ୀ௞ିே

 (4.16) 

For the total uncertainty, the formulas for the first diagonal and remaining diagonals are 
shown in formula (4.17). 

෢ܨܥൣݎܸܽ ൧(ݐ݋ݐ)்

= ෍
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ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
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۔
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ۖ
ۖ
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ۖ
ۖ
ۖ
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1
ܿ̂(݆,N-j+1)

+ ෑ(1 − ேି௝ାଵߙ
௠ )

்ିଵ

௠ୀଵ
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1
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ൡ
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൱
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௞

 (4.17) 

Using formulas (4.16) and (4.17), the results for the sample data triangle will be similar to the 
results shown in Table 4.7, meaning the first diagonal will be less than the same diagonal in 
Table 3.6 and the totals will match the same time window in Tables 4.2 and 4.3. 

4.6 A Comparison of Mack vs. Merz-Wüthrich 
Now that we have reviewed the various formulas related to the Mack and Merz-Wüthrich 

models, it is instructive to compare the runoff for the two models using the totals from Tables 
(3.3), (3.4), (3.5), (4.2), and (4.3). As shown in Table 4.8, at time ݐ = 0 (and ܶ = 1) the standard 
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deviation for the 1-year time horizon is 72.7% of the standard deviation for the ultimate time 
horizon. As previously discussed, this makes sense since the 1-year time horizon only includes 
the parameter variance beyond the first diagonal. 

Table 4.8 – Comparison of Estimated Runoff for Mack and Merz-Wüthrich Models 

  

 

 

 

 

 

 

 

In the England, Verrall and Wüthrich [3] paper, the authors discuss using the runoff of the 
time window standard deviations for the runoff of the capital requirement in the cost of capital 
method of calculating the risk margin under Solvency II.15 While the runoff of the time window 
standard deviations clearly reconcile16 with the Mack standard deviations, it does not appear as 
though the runoff of the time window standard deviations adhere to the time horizon concept 
used for Solvency II. Thus, the Merz-Wüthrich would be more accurately described as a 
reasonable approximation for the runoff of the capital requirement. 

To illustrate this issue, we start with ܶ = 1 as shown in Table 4.6 and note that the first 
diagonal (i.e., for ݇ = 11) is identical to the first diagonal in Table 3.8 since it includes both 
process and parameter uncertainty. The differences in the total uncertainty between Tables 4.6 
and 3.8 is completely due to the remaining diagonals in Table 4.6 that only contain parameter 
uncertainty. This is the essence of the 1-year time horizon since the first diagonal should be an 
estimate of the total uncertainty and then we are concerned with estimating the change in 
reserves given the possible outcomes during the first year. 

                                                           
15 More specifically, the capital requirement is based on the 99.5th percentile of the 1-year time horizon unpaid claim 

distribution and the runoff of the capital requirement would be based on subsequent 99.5th percentiles as ܶ′ =
1,2, … , ܰ. 

16 As shown in Table 4.2, the square root of the sum of the squares of the Merz-Wüthrich standard deviations by time 
window for each accident year and the total of all accident years are the same as the Mack standard deviations. 

t = 0 18,680,856     2,447,095       13.1% 1,778,968       9.5% 72.7%
1 13,454,320     1,788,912       13.3% 1,177,727       8.8% 65.8%
2 9,274,925       1,340,940       14.5% 885,178          9.5% 66.0%
3 6,143,258       954,131          15.5% 607,736          9.9% 63.7%
4 4,015,986       663,602          16.5% 428,681          10.7% 64.6%
5 2,454,107       431,762          17.6% 267,503          10.9% 62.0%
6 1,276,363       263,362          20.6% 128,557          10.1% 48.8%
7 532,076          159,952          30.1% 96,764            18.2% 60.5%
8 86,555            70,421            81.4% 49,055            56.7% 69.7%

෠ܴ௧(ݐ݋ݐ) ]ݎܸܽ ෠ܴ௧(ݐ݋ݐ)]
 

ܸ݋ܥ ]ݎܸܸܽ݋ܥ ෠்ܴᇱ(ݐ݋ݐ)]
 

݋݅ݐܴܽ



Cash Flow and Unpaid Claim Runoff Estimates Using Mack and Merz-Wüthrich Models 
 
 

© Copyright 2019. Milliman, Inc. All Rights Reserved. 27 

For the runoff of the time window, as we move to ܶ′ = 2 the same logic should continue to 
hold true, meaning after the first year is complete we would then want to estimate the total 
uncertainty for the next diagonal and the change in reserves given the possible outcomes during 
that second year. Following this logic, the first diagonal (i.e., for ݇ = 12) in Table 4.7 should 
be identical to the second diagonal in Table 3.8. However, as seen in Table 4.7 the first diagonal 
is less than the second diagonal in Table 3.8 since it does not include all of the parameter 
uncertainty. 

This issue can also be observed by comparing the oldest accident years for the runoff of the 
standard deviations in Tables 3.4 and 4.2. For example, in Table 3.4 the standard deviation for 
the oldest accident year when ݐ = 1 is 74,931 and in Table 4.2 the standard deviation for the 
oldest accident year when ܶ′ = 2 is 60,996. Since both of these cells include only the first 
diagonal, the values should be the same. From the perspective of reconciling the runoff of Merz-
Wüthrich with Mack this makes sense, but from the perspective of running off the required 
capital it does not make sense. 

Another way to think about the runoff of the Merz-Wüthrich standard deviations is that 
they are always looking at the runoff from the perspective of the current time, or ݐ = 0. From 
this perspective, in the second year (i.e., ܶ′ = 2) the first remaining diagonal (i.e., for ݇ = 12 in 
Table 4.7) can be thought of as only containing enough uncertainty to reconcile with Mack at 
time ݐ = 0. This perspective is also consistent with the total reserve notation in this section that 
does not contain a subscript implying that ݐ = 0. 

We can illustrate this issue with 2 other cases: 

 If in the formula of ߙௗ
், ܿ̂(ܰ + ܶ − ݀, ݀) is much greater than ܿ̂(݅, ݀) with i< ܰ + ܶ −

݀, then ߙௗ
் tends to one and (1 − ௗߙ

்) tends to 0. This would imply there is no more 
remaining parameter risk for ܶ′ ≥ 2 linked to the diagonals ܶ′ + 1 which does not make 
sense in a run off of the required capital. 

 We can also compare the case here with the re-reserving method or actuary in the box 
method (see Diers [2]). When simulating the T+1, …, T+N diagonals with the Bootstrap 
incrementals, a full Chain Ladder is applied, i.e., the full estimation risk is calculated 
even if it was already partially captured in the previous diagonal run-off. 
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5. TIME-HORIZON UNCERTAINY: AN ALTERNATIVE APPROACH 

In order to calculate the runoff of the required capital under Solvency II, we need to revise 
formulas (4.5), (4.7), (4,9), and (4.10) to include all of the parameter uncertainty for the first 
diagonals as the reserves runoff for ݐ > 0. 

5.1 Uncertainty by Accident Year: T-Year Time Horizon 
Starting with ܶ = 2, formula (4.5) must be revised as shown in formula (5.1), except that to 

clearly note that we are concerned with a 1-year time horizon one year in the future the notation 
has also been revised to show that ݐ = 1 and ܶ = 1. 

ൣݎܸܽ ෠ܴଵ
ଵ(ݓ)൧ = ,ݓ)̂ܿ ݊)ଶ ×

ොேାଶି௪ߪ
ଶ

෠(N+2-w)ଶܨ
× ቊ

1
(N+2-w,ݓ)̂ܿ

+
1

∑ ܿ(݆,N+2-w)௪ିଵ
௝ୀଵ

ቋ 

,ݓ)̂ܿ+ ݊)ଶ × ෍
ොௗߪ

ଶ

෠(݀)ଶܨ

௡ିଵ

ௗୀ௡ାଷି௪

× ቊߙௗ
ଶ ×

1
∑ ܿ(݆, ݀)ேିௗ

௝ୀଵ
ቋ 

(5.1) 

Comparing formula (5.1) with formula (4.5), the one minus the weights for ܶ = 1 portions 
have been removed, but the weights for ܶ = 2, as in formula (4.6), is still included. This formula 
for the second year is consistent with formula (4.1) for the first year. The generalization for ݐ >

2 is shown in formula (5.2). 

ൣݎܸܽ ෠ܴ௧
ଵ(ݓ)൧ = ,ݓ)̂ܿ ݊)ଶ ×

ොேା௧ାଵି௪ߪ
ଶ

෠(N+t+1-w)ଶܨ
× ቊ

1
(N+t+1-w,ݓ)̂ܿ

+
1

∑ ܿ(݆,N+t+1-w)௪ିଵ
௝ୀଵ

ቋ 

,ݓ)̂ܿ+ ݊)ଶ × ෍
ොௗߪ

ଶ

෠(݀)ଶܨ

௡ିଵ

ௗୀ௡ା௧ାଶି௪

× ቊߙௗ
௧ାଵ ×

1

∑ ܿ(݆, ݀)ேିௗ
௝ୀଵ

ቋ 
(5.2) 

The generalization for ݐ > 2 uses the weights as shown in formula (4.8), except that ܶ = ݐ +

1 using the new notation with both subscripts and superscripts. 

5.2 Total Uncertainty: T-Year Time Horizon 
The revised formula for the total uncertainty when ݐ = 2 is shown in formula (5.3). 
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ൣݎܸܽ ෠ܴଵ
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(5.3) 

The generalization for ݐ > 2 is shown in formula (5.4). Comparing formulas (5.3) and (5.4) 
with formulas (4.9) and (4.10), respectively, the one minus the weights terms have been removed 
similar to formulas (5.1) and (5.2). 
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(5.4) 

Applying formulas (5.1) to (5.4) to the sample data results in the standard deviations by year 
as shown in Table 5.1, with the results from Table 4.1 repeated in the first column of Table 5.1. 

Table 5.1 – Runoff of Alternative Estimated Standard Deviations of the Unpaid Claims 

 

 

 

 

 

 

 

As expected, the standard deviations runoff in a similar fashion to the estimated unpaid 
claims and when ݐ = 8 there is no covariance adjustment term since there is only one “cell” 
remaining. An additional part of the results in Table 5.1 is the Total column, which is the square 

t = 0 1 2 3 4 5 6 7 8 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 75,535            -                   -                   -                   -                   -                   -                   -                   -                   75,535            
3 105,309          74,931            -                   -                   -                   -                   -                   -                   -                   129,247          
4 79,846            100,806          74,041            -                   -                   -                   -                   -                   -                   148,389          
5 235,115          68,535            93,353            69,186            -                   -                   -                   -                   -                   271,067          
6 318,427          240,563          67,590            95,673            71,982            -                   -                   -                   -                   422,102          
7 361,089          336,607          255,033          70,558            102,361          78,029            -                   -                   -                   574,697          
8 629,681          400,731          374,947          284,965          79,593            116,320          90,307            -                   -                   898,273          
9 588,662          562,933          356,774          334,233          253,564          69,171            101,939          77,826            -                   993,953          
10 1,029,925       544,418          521,865          329,305          308,794          234,466          62,194            92,663            70,421            1,380,457       

CVA 1,025,050      787,105         592,464         434,573         299,857         212,772         154,021         79,424            -                  1,541,216      
Total 1,778,968      1,258,989      987,439         713,534         521,112         353,057         214,796         144,746         70,421            2,588,861      

]ݎܸܽ ෠ܴ
௧
ଵ(ݓ)]
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root of the sum of the squares of the other columns. The Total column shows that this time 
horizon runoff does not reconcile with the results from Mack, but that is not the intent. 

The expected runoff of the unpaid claims is identical to the runoff for Mack, as previously 
shown in Table 3.3. Dividing the standard deviations in Table 5.1 by the means in Table 3.3 
results in the runoff of the coefficients of variation shown in Table 5.2. 

Table 5.2 – Runoff of Alternative Coefficients of Variation of the Unpaid Claims 

 

 

 

 

 

 

Adjusting formulas (5.1) and (5.2) to include the covariance adjustment related to each 
accident year are left to the reader. Applying formula (4.4), and the extensions for formulas (5.1) 
and (5.2), the runoff of the standard deviations in Table 5.1 are restated in Table 5.3. 

Table 5.3 – Runoff of Alternative Estimated Standard Deviations of the Unpaid Claims 

 

 

 

 

 

 

The coefficients of variation comparing the standard deviations in Table 5.3 to the expected 
values in Table 3.3 are shown in Table 5.4. As noted above for Table 4.1, there is a smoother 
transition of all CoVs from the oldest year to the most current year. 

  

t = 0 1 2 3 4 5 6 7 8 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 79.8% -                   -                   -                   -                   -                   -                   -                   -                   79.8%
3 22.4% 80.0% -                   -                   -                   -                   -                   -                   -                   27.5%
4 11.3% 21.8% 80.2% -                   -                   -                   -                   -                   -                   20.9%
5 23.9% 10.5% 22.0% 81.8% -                   -                   -                   -                   -                   27.5%
6 22.4% 23.2% 9.9% 21.4% 80.9% -                   -                   -                   -                   29.7%
7 16.6% 21.4% 22.2% 9.3% 20.7% 79.1% -                   -                   -                   26.4%
8 16.1% 15.4% 19.9% 20.7% 8.8% 19.6% 76.4% -                   -                   22.9%
9 13.8% 17.3% 16.4% 21.3% 22.2% 9.2% 20.7% 79.2% -                   23.2%
10 22.3% 14.4% 18.2% 17.2% 22.4% 23.3% 9.3% 21.4% 81.4% 29.8%

Total 9.5% 9.4% 10.6% 11.6% 13.0% 14.4% 16.8% 27.2% 81.4% 13.9%

ܸ݋ܥ

t = 0 1 2 3 4 5 6 7 8 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 75,535            -                   -                   -                   -                   -                   -                   -                   -                   75,535            
3 132,910          74,931            -                   -                   -                   -                   -                   -                   -                   152,577          
4 152,332          128,734          74,041            -                   -                   -                   -                   -                   -                   212,742          
5 279,093          136,650          120,436          69,186            -                   -                   -                   -                   -                   340,379          
6 390,584          278,768          133,825          121,406          71,982            -                   -                   -                   -                   517,781          
7 484,763          406,147          290,998          138,420          130,333          78,029            -                   -                   -                   725,855          
8 769,047          531,387          449,405          322,236          156,635          148,897          90,307            -                   -                   1,111,066       
9 800,010          695,112          485,883          409,150          291,078          149,109          137,853          77,826            -                   1,287,906       
10 1,192,165       732,101          643,749          446,323          374,337          272,318          137,763          122,044          70,421            1,680,466       

Total 1,778,968      1,258,989      987,439         713,534         521,112         353,057         214,796         144,746         70,421            2,588,861      

]ݎܸܽ ෠ܴ
௧
ଵ(ݓ)′]
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Table 5.4 – Runoff of Alternative Coefficients of Variation of the Unpaid Claims 

 

 

 

 

 

 

5.3 Cash Flow Uncertainty 
Similar to the accident year formulas, cash flow formulas (4.11), (4.12), and (4.13) do not 

need to be revised. Moving to the formulas for ݐ = 1, the formulas for the first diagonal and 
remaining diagonals are shown in formula (5.5). 

෢ܨܥൣݎܸܽ
ଵ
ଵ(݇)൧

= ෍

ە
ۖ
۔

ۖ
ଶ(N-j+2,݆)̂ܿۓ ×

ොேି௝ାଵߪ
ଶ

෠(N-j+1)ଶܨ
× ൝

1
ܿ̂(݆,N-j+1)

+
1

∑ ܿ(݅,N-j+1)ேି௝ିଵ
௜ୀଵ

ൡ ; ݇ = ܰ + 2

ܿ̂(݆,N-j+2)ଶ ×
ොேି௝ାଵߪ

ଶ

෠(N-j+1)ଶܨ
× ൝ߙேି௝ାଵ

ଶ ×
1

∑ ܿ(݅,N-j+1)ேି௝ିଵ
௜ୀଵ

ൡ ; ݇ > ܰ + 2
ۙ
ۖ
ۘ

ۖ
ۗ

ே

௝ୀ௞ିே

 
(5.5) 

For the total uncertainty, the formulas for the first diagonal and remaining diagonals are 
shown in formula (5.6). 
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 (5.6) 

Using formulas (5.5) and (5.6), the results for the sample data triangle are shown in Table 5.5. 

  

t = 0 1 2 3 4 5 6 7 8 TOTAL
w 1 -                   -                   -                   -                   -                   -                   -                   -                   -                   -                   

2 79.8% -                   -                   -                   -                   -                   -                   -                   -                   79.8%
3 28.3% 80.0% -                   -                   -                   -                   -                   -                   -                   32.5%
4 21.5% 27.8% 80.2% -                   -                   -                   -                   -                   -                   30.0%
5 28.3% 21.0% 28.4% 81.8% -                   -                   -                   -                   -                   34.6%
6 27.5% 26.9% 19.5% 27.2% 80.9% -                   -                   -                   -                   36.5%
7 22.3% 25.8% 25.4% 18.3% 26.4% 79.1% -                   -                   -                   33.3%
8 19.6% 20.4% 23.9% 23.4% 17.2% 25.1% 76.4% -                   -                   28.3%
9 18.7% 21.3% 22.4% 26.1% 25.4% 19.7% 28.0% 79.2% -                   30.1%
10 25.8% 19.4% 22.4% 23.3% 27.1% 27.0% 20.7% 28.1% 81.4% 36.3%

Total 9.5% 9.4% 10.6% 11.6% 13.0% 14.4% 16.8% 27.2% 81.4% 13.9%

ܸ݋ܥ
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Table 5.5 – Estimated Alternative Cash Flow and Standard Deviations for t=1 

  

 

 

 

 

 

 

 

 

Comparing Table 5.5 with Table 3.8, note that the standard deviation for ݇ = 12 in Table 
5.5 is the same as in Table 3.6, which makes sense since formula (5.5) for the first diagonal 
includes all of the process and parameter uncertainty. Comparing Table 5.5 with the columns 
for ݐ = 1 in Tables 5.1 and 5.2, the totals are identical as expected. 

Similar to the alternative view of the covariance adjustment by calendar year for the Mack 
model, a portion of the covariance adjustment in formula (5.6) can be included with formula 
(5.5) as shown in formula (5.7). 
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 (5.7) 

This alternative view of the alternative cash flow estimates is also included in Table 5.5, 
starting with the column that shows the portion of the covariance adjustment “allocated” to 

k 11
12 4,179,394       609,716          14.6% 1,015,053      1,184,097       28.3%
13 3,131,668       98,559            3.1% 254,367         272,794          8.7%
14 2,127,272       87,848            4.1% 197,935         216,554          10.2%
15 1,561,879       74,810            4.8% 149,542         167,210          10.7%
16 1,177,744       64,972            5.5% 115,815         132,795          11.3%
17 744,287          54,453            7.3% 87,781            103,298          13.9%
18 445,521          45,194            10.1% 48,293            66,142            14.8%
19 86,555            31,868            36.8% -                  31,868            36.8%

CVA 1,086,291      1,086,291      
Total 13,454,320    1,258,989      9.4% 1,258,989      9.4%

CoVܨܥ෢ଵ
ଵ(݇) ෢ܨܥ]ݎܸܽ
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ଵ(݇)]
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each calendar year. Note that for the alternative view the CoVs exhibit a smoother transition 
from the first diagonal to the last diagonal similar to the Mack alternative view. 

Continuing with the formulas for ݐ > 2, the formulas for the first diagonal and remaining 
diagonals are shown in formula (5.8). 
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(5.8) 

The formulas for the total uncertainty are shown in (5.9). 
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 (5.9) 

Using formulas (5.8) and (5.9), the results for the sample data triangle will be similar to the 
results shown in Table 5.5, meaning the first diagonal will be equal to the same diagonal in 
Table 3.6 and the totals will match the same time horizon in Tables 5.1 and 5.2. 

5.4 Comparison with Mack 
Now that we have revised the formulas related to the Merz-Wüthrich models, it is instructive 

to compare the runoff for the two models using the totals from Tables 3.3, 3.4, 3.5, 5.1, and 5.2. 
As shown in Table 5.6, at time ݐ = 0 (and ܶ = 1) the standard deviation for the 1-year time 
horizon is 72.7% of the standard deviation for the ultimate time horizon. As previously 
discussed, this makes sense since the 1-year time horizon only includes the parameter variance 
beyond the first diagonal. In addition, the standard deviations for the last runoff period at time 
ݐ = 8 are identical since there is no future diagonals at that point in time. 
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Table 5.6 – Comparison of Alternative Estimated Runoff with Mack Model 

 

 

 

 

 

 

 

 

In contrast to the runoff comparison with Merz-Wüthrich in Table 4.8, it does appear as 
though the runoff of the time horizon standard deviations adhere to the concepts used for 
Solvency II and, thus, is not an approximation for the runoff of the capital requirement. 

5.5 Comparison of Risk Margins 
As a final comparison, we can test how the different runoffs of the capital requirement affect 

the risk margins using the cost of capital method under Solvency II. Starting with the runoff 
from the Merz-Wüthrich method from Table 4.8, in Table 5.7 the lognormal distribution 
assumption is used to calculate the 99.5% Value at Risk (VaR). Using the VaR for each future 
year in the runoff, the costs of capital are calculated assuming an expected return of 6.0% and 
then the runoff of the cost of capital is discounted at 2.0%. Summing the discounted cost of 
capital over the runoff period results in a total discounted cost of capital of 891,587, which is 
4.8% of the unpaid claims (i.e., 18,680,856) at ݐ = 0. 

  

t = 0 18,680,856     2,447,095       13.1% 1,778,968       9.5% 72.7%
1 13,454,320     1,788,912       13.3% 1,258,989       9.4% 70.4%
2 9,274,925       1,340,940       14.5% 987,439          10.6% 73.6%
3 6,143,258       954,131          15.5% 713,534          11.6% 74.8%
4 4,015,986       663,602          16.5% 521,112          13.0% 78.5%
5 2,454,107       431,762          17.6% 353,057          14.4% 81.8%
6 1,276,363       263,362          20.6% 214,796          16.8% 81.6%
7 532,076          159,952          30.1% 144,746          27.2% 90.5%
8 86,555            70,421            81.4% 70,421            81.4% 100.0%

෠ܴ௧(ݐ݋ݐ) ]ݎܸܽ ෠ܴ௧(ݐ݋ݐ)]
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Table 5.7 – Calculation of Risk Margin using Merz-Wüthrich Model 

  

 

 

 

 

 

 

 

 

In Table 5.8, the runoff using the alternative model from Table 5.6 is used to calculate the 
discounted cost of capital. Using all of the same assumptions noted above for Table 5.7, except 
for the standard deviation of the unpaid claims, the alternative model estimates the total 
discounted cost of capital at 1,007,157 or 5.4% of the unpaid claims at ݐ = 0. 

Table 5.8 – Calculation of Risk Margin using Alternative Model 

 

 

 

 

 

 

 

 

 

Comparing Table 5.7 and 5.8, it makes sense that the risk margin is larger for the alternative 

99.5th 99.5% 6.0% Discounted
Percentile VaR CoC CoC

t = 0 18,680,856     1,778,968       23,753,426     5,072,570       304,354          301,328          
1 13,454,320     1,258,989       17,038,055     3,583,735       215,024          208,674          
2 9,274,925       987,439          12,123,409     2,848,484       170,909          162,580          
3 6,143,258       713,534          8,222,165       2,078,907       124,734          116,308          
4 4,015,986       521,112          5,555,442       1,539,456       92,367            84,424            
5 2,454,107       353,057          3,512,025       1,057,918       63,475            56,868            
6 1,276,363       214,796          1,935,777       659,413          39,565            34,745            
7 532,076          144,746          1,021,830       489,754          29,385            25,295            
8 86,555            70,421            421,013          334,458          20,067            16,933            

Total 1,007,157      
Percent of Unpaid Claims: 5.4%

]ݎܸܽ ෠ܴ
௧
ଵ(ݐ݋ݐ)]

 
෠ܴ௧(ݐ݋ݐ)

99.5th 99.5% 6.0% Discounted
Percentile VaR CoC CoC

t = 0 18,680,856     1,778,968       23,753,426     5,072,570       304,354          301,328          
1 13,454,320     1,177,727       16,785,734     3,331,414       199,885          193,982          
2 9,274,925       885,178          11,799,479     2,524,553       151,473          144,092          
3 6,143,258       607,736          7,882,818       1,739,561       104,374          97,323            
4 4,015,986       428,681          5,252,966       1,236,980       74,219            67,836            
5 2,454,107       267,503          3,227,797       773,690          46,421            41,590            
6 1,276,363       128,557          1,645,023       368,659          22,120            19,425            
7 532,076          96,764            833,102          301,026          18,062            15,548            
8 86,555            49,055            293,233          206,679          12,401            10,464            

Total 891,587         
Percent of Unpaid Claims: 4.8%

]ݎܸܽ ෠்ܴᇱ(ݐ݋ݐ)]
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method since the runoff is a bit slower.17 While there could be situations where the alternative 
method results in a faster runoff and a smaller risk margin, it seems like the most common result 
would be for the alternative method to result in a larger risk margin. In other words, in most 
situations the risk margin using the Merz-Wüthrich approximation for the runoff would be 
underestimated. 

6. CONCLUSIONS 

After reviewing the Mack and Merz-Wüthrich model formulas, the paper expands their 
usefulness by adding runoff and cash flow formulas. By comparing the runoff of the Merz-
Wüthrich results to the Mack runoff it was demonstrated the Merz-Wüthrich does reconcile 
with the Mack in the sense that the variances of the time windows total to the Mack variances 
for the ultimate time horizon and is consistent in the context of a ݐ = 0 view. However, to 
estimate the runoff of the required capital for the cost of capital method of calculating the risk 
margin under Solvency II, this formula would underestimate the risk when we consider the 
view at ݐ > 0. In order to estimate the risk for ݐ > 0, the first future year for each runoff period 
must include both the full process and parameter variance.  Thus, an alternative set of formulas 
were derived and demonstrated to be consistent with concepts used for Solvency II. Finally, 
alternate views of the covariance adjustment were developed for all of the formulas that result 
in a smoother transition of the coefficients of variation and aide in comparisons to other models. 

 

                                                           
17 In this example, the risk margin is 13.0% larger but other examples could result in larger or smaller differences 

between the models. 
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Supplementary Material 

There are companion files designed to give the reader a deeper understanding of the formulas discussed in the 
paper and that were used to calculate all of the tables in this paper. The files are all in the “Mack & Merz-
Wüthrich.zip” file. The files are: 

 
Mack & Merz-Wüthrich Runoff.xlsm – this file contains the detailed calculations described in this paper for a 

single segment or line of business for a 10 x 10 triangle only. Data can be entered for a new triangle, exposures, a 
tail factor, and tail standard deviation. 

 
Mack & Merz-Wüthrich Calc.xlsm – this file contains VBA functions that replicate all of the calculations in 

the “Runoff” file for a segment or line of business for any size triangle. Data can be entered for a new triangle, 
exposures, a tail factor, and tail standard deviation. 

 
Milliman Mind Application – this file replicates all of the options in the “Runoff” Excel file using the Milliman 

Mind platform. The app is free to use. 
 
  



Cash Flow and Unpaid Claim Runoff Estimates Using Mack and Merz-Wüthrich Models 
 
 

 
38 © Copyright 2019. Milliman, Inc. All Rights Reserved. 

REFERENCES 

[1] CAS Working Party on Quantifying Variability in Reserve Estimates. 2005. “The Analysis and Estimation 
of Loss & ALAE Variability: A Summary Report.” CAS Forum (Fall): 29-146. 

[2] Diers, Dorothea. 2019. “Stochastic re-reserving in multi-year internal models – An approach based on 
simulations.” ASTIN Colloquium. 39. 

[3] England, Peter D., Richard J. Verrall and Mario V. Wüthrich. 2018. “On the Lifetime and One-Year View 
of Reserve Risk, with Application to IRFS 17 and Solvency II Risk Margins.”  

[4] Foundations of Casualty Actuarial Science, 4th ed. 2001. Arlington, Va.: Casualty Actuarial Society. 
[5] Mack, Thomas. 1993. “Distribution Free Calculation of the Standard Error of Chain Ladder Reserve 

Estimates.” ASTIN Bulletin 23-2: 213-225. 
[6] Mack, Thomas. 1999. “The Standard Error of Chain Ladder Estimates: Recursive Calculation and Inclusion 

of a Tail Factor.” ASTIN Bulletin, 29, 2, 361-366. 
[7] Merz, Michael, and Mario V. Wüthrich. 2008. “Modeling the Claims Development Result for Solvency 

Purposes.” Casualty Actuarial Society E-Forum (Fall): 542-568. 
[8] Merz, Michael, and Mario V. Wüthrich. 2015. “Claims Run-off Uncertainty: The Full Picture.” Swiss Finance 

Institute Research Paper No. 14-69. https://ssrn.com/abstract=2524352.  
[9] Taylor, Greg and Frank Ashe. 1982. “Second Moments of Estimates of Outstanding Claims.” ASTIN 

Colloquium. 23. 
[10] Venter, Gary G. 1998. “Testing the Assumptions of Age-to-Age Factors.” Proceedings of the Casualty 

Actuarial Society LXXXV: 807-47. 
 
 
Abbreviations and notations 
Collect here in alphabetical order all abbreviations and notations used in the paper 

CL, chain ladder MSEP, mean squared error of prediction 
CoV, coefficient of variation VaR, Value at Risk 
CVA, covariance adjustment  
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